

Normalverteilung

Eine sehr anschauliche Einführung

mit vielen Beispielen

und einer Aufgabensammlung

Hinweis: Aufgaben und Trainingsaufgaben dieses Textes sind in einem eigenen Text (Sammlung 9 zur Normalverteilung Nr. 34511) zusammen gefasst.

Dieser enthält zusätzliche Aufgaben aus Prüfungen.

Datei Nr. 34510

Friedrich W. Buckel

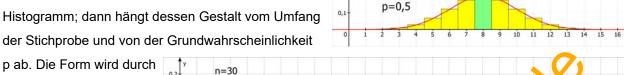
Stand 4. August 2016

INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

https://mathe-cd.de

Inhalt

1	Übersicht über den Inhalt dieses Textes			3
2	Wiederholung: Drei Beispiele von Binomialverteilungen 4 – 9			4 – 5 - 6
3	Standardisierung von Binomialverteilungen			7
	3.1 Gaußsche Glockenkurven zu Histogrammen		Ssche Glockenkurven zu Histogrammen	7
		Stan	dardisierte Glockenkurve und φ – Funktion	10
	3.2	Umk	ehrung: Berechnung von Binomialverteilunsgswerten aus φ(τ)	11
		Drei	Berechnungsbeispiele	12 – 13
4.	Verteilungsfunktionen zur Berechnung von Intervall-Wahrscheinlichkeiten			14
	4.1	Wied	lerholung: Verteilungsfunktionen der Binomialverteilung	14
	4.2	Verteilungsfunktion Φ der Normalverteilung		16
	4.3	Nähe	erungsrechnungen mit der Verteilungsfunktion (Beispiele)	18
		Glob	ale Näherungsformel von Moivre-Lapla	19
		Train	ingsaufgaben 2 bis 5	22
5.	Echte Normalverteilungen			23
	5.1	Hinfü	ihrung – ein klein wenig Thecrie	23
	5.2	Beispiele für normalverteilte Größen		25
		B1:	Abfüllen von Zuckerpackungen	25
		B2:	Lebensdauer von Akkus	27
		B3:	Toleranzgrenze fu Schrauben (Rückwärtsrechnung)	28
	5.3	Zusammenstellung der Grundaufgaben zu Normalverteilungen		29
		Intervalle, die zum Mittelwert symmetrisch sind		
		Trainingsaufgaben 6 bis 10		31
	5.4	Die	edeد الله g der Sigma-Umgebungen von μ	32
	5.5	Das I	Problem der Wahrscheinlichkeit $P(X = k)$ bei Normalverteilung	en 33
6	Auswertung von Messreihen stetiger Größen durch Klassierung			34
	Eirführungsbeispiel 1 (Geschwindigkeitskontrollen)			34
	Beispiel 2 (Masse von Hühnereiern)			38
Locungen der Trainingsaufgaben 42				


Friedrich Buckel www.mathe-cd.de

Übersicht über den Inhalt des Textes 1

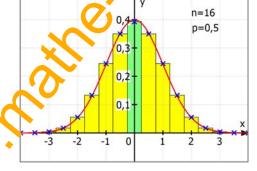
Darum geht es:

Erstellt man zu einer Binomialverteilung ein

Histogramm; dann hängt dessen Gestalt vom Umfang

n=16

p ab. Die Form wird durch eine Glockenkurve beschrieben,



deren Hochpunkt beim Erwartungswert E = n · p liegt. Je größer dieser ist, desto weiter rechts liegt der Hochpunkt.

Man kann durch eine Verschiebung Stauchung und eine Streckungen alle diese Histogramme bzw. die darübergelegte Glockenkurve auf eine Grundform zurückführen.

Diese Kurve heißt Gaußsche Glockenkurve (rote Kurve).

Die zugehörende Funktion ist die sogenannte Dichtefunktion der standardisierten Normalverteilung mit der Gleichung

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{1}{2}x^2}$$

Aus ihren Werten kann man näherungsweise alle Bin omialverteilungswerte berechnen. Die Werte von φ kann man aus Tabellen ablesel oder mit CAS-Rechnern oder GTR berechnen.

Diese Grundlagen und die Berechnungemeloden dazu werden in den Abschnitten 3 und 4 hergeleitet bzw. besprochen. Das geschieht sehr anschaulich mit Beispielen.

Vom Schüler wird ggf. erwartet, dass er diese Näherungsrechnungen ausführen kann, obwohl heute ja jeder bessere Rechner die Bin miaverteilung beherrscht.

Im Abschnitt 5 werden die Koprimente besprochen, die sich nicht mehr mit der Binomialverteilung berechnen lassen, weil es sich um Größen bzw. Zufallsvariable handelt, die nicht mehr ganzzahlige Werte besitzen, soperin beliebige Zwischenwerte wie 247,3 g Mehl u.v.a. Diese verhalten sich in der Regel (also normale weise) so, wie diese Gaußfunktionen es beschreiben. Man nennt diese Berechnungs netwoden daher Normalverteilung. Dieser Stoff steht im Lehrplan vieler beruflichen Gymnasie 12 and nicht nur dort. Daher gibt es wichtige Beispiele und Aufgaben.

Bei solchen Messungen fasst man die vielen unterschiedlichen Ergebnisse oft in Klassen zusammen; etwa bei der Bestimmung von Geschwindigkeitsmessungen von $40\frac{km}{h}$ bis $60\frac{km}{h}$, dann ab 60 km bis 80 km usw. Wie man Messreihen auswertet, die aus solchen zusammenfassenden Klassen bestehen, findet man im Abschnitt 6.

Friedrich Buckel www.mathe-cd.de